2 in aqueous base (1 equiv) with ether to remove α -methylbenzylamine followed by reaction of the aqueous phase at pH 5 and 20° with 2.5 equiv of iodine afforded the iodolactone **3** ($\mathbf{R'} = \mathbf{H}$)^{7a} (85%)⁸ as an oil which was treated directly with dimethyl-*tert*-butylsilyl chloride (1.5 equiv) and imidazole (2 equiv) in dimethyl-formamide⁹ at 35° for 22 hr to give the silyl ether **3** ($\mathbf{R'} = \mathbf{DMBS}$),⁷ as a colorless oil (85%), [α]¹⁸D +28.5° (c 1.05 in CHCl₃). Exposure of this silyl ether to 1,5-diazabicyclo[4.3.0]non-5-ene¹⁰ (1 equiv) in tetrahydro-furan at 70° for 2 hr under argon led to elimination of HI to form the unsaturated lactone **4**,⁷ [α]¹⁴D -25.5° (c 1.86 in CHCl₃), isolated in 94% yield as a colorless liquid.

The unsaturated lactone 4 was treated with an equimolar quantity of the organocopper reagent 5 (S configuration, vide infra) in ether-pentane (ca. 2:1, 7 ml/mmol of 4 total volume) under argon at -78 to -60° for 1 hr, -60 to -40° for 1 hr, and finally at -40 to -20° for 1 hr (reaction complete). The mixture was cooled to -50° and quenched with methanol. The coupling product $\mathbf{6}$, obtained from this mixture by partitioning between saturated aqueous ammonium chloride-ether and concentration of the ether phase, was directly converted to the hydroxy lactone 7 by heating with 1:1 acetone-0.2 M aqueous hydrochloric acid at 55-60° for 2 hr. Purification was effected by saponification of 7 with 1.5 equiv of lithium hydroxide in 1:1 dimethoxyethane-water at 5°, extraction with ether to remove nonacidic material, acidification to pH 3, and extraction with ethyl acetate. The product contained in the extract underwent clean acid-catalyzed cyclization after several hours at 25° to afford the pure lactone $7^{7,8}$ $(ca. 80\% \text{ yield}), [\alpha]^{18}D + 252^{\circ} (c \ 0.2 \text{ in CHCl}_3), \text{ as a color-}$ less oil identical in all respects with a specimen of 7 produced by an independent and unambiguous synthetic route.¹¹ Further, oxidation of 7 using activated manganese dioxide produced the enone 87 which was identical spectroscopically and chromatographically with a sample of 8 synthesized in these laboratories from the known substance 9 by the sequence: $9 \rightarrow 11$ -tosylate $(TsCl-pyridine) \rightarrow \Delta^{10,11}$ olefin (base) \rightarrow 15-alcohol $(HOAc-H_2O) \rightarrow 15$ -ketone 8 (MnO_2) .¹²

Careful chromatographic examination of the mixture produced by reaction of 4 and 5 did not reveal the presence of the coupling product corresponding to SN2'mode of reaction. In contrast, however, we have observed that reaction of the cuprate 5 with the ketal 10 proceeds to give comparable amounts of SN2 and SN2'products. The observed selectivity for SN2 product in the case of substrate 4 would appear to be a consequence of the bulk of the *tert*-butyldimethylsilyloxy group and a preference for cis stereochemistry in the SN2' process.¹³

The vinylic copper reagent 5 required for the above described coupling was prepared from the corresponding vinylic lithium reagent along lines previously described,¹⁴ starting from the corresponding vinylic iodide

(7) Satisfactory (a) infrared, proton magnetic resonance, and (b) mass spectral data were obtained for this intermediate.
(8) Yield not optimized.

(11) E. J. Corey and G. Moinet, J. Amer. Chem. Soc., 95, 6831 (1973). (12) The first two steps of this sequence were performed by Dr. Shiro Terashima.

(13) See G. Stork and W. N. White, J. Amer. Chem. Soc., 78, 4609 (1956).

(obtained essentially by the method of the Syntex group¹⁵).

The conversion of 7 to prostaglandins which is described elsewhere,¹¹ taken together with the work described herein, constitutes a synthesis of the major prostaglandins of the second series, PGA₂, PGE₂, and PGF_{2α}. This route to prostaglandins is short and simple, completely stereocontrolled, and, as indicated earlier, affords the A prostaglandin directly rather than indirectly. It should be of value in the synthesis of PGA analogs having modified side chains, substances which are currently of great medical interest.¹⁶

(14) E. J. Corey and D. J. Beames, ibid., 94, 7210 1972).

(15) A. F. Kluge, K. G. Untch, and J. H. Fried, *ibid.*, 94, 7827 (1972). In our work (S)-(-)-oct-1-yn-3-ol [J. Fried, C. H. Lin, M. M. Mehra, and P. Dalven, *Ann. N. Y. Acad. Sci.*, 180, 38 (1971)] was converted to the *tert*-butyldimethylsilyl ether,⁹ hydroborated with 9-borabicyclo[3.3.1]nonane to afford a vinylborane which yielded the vinylic iodide by successive treatment with trimethylamine oxide and iodine.

(16) This work was assisted financially by the National Institutes of Health and also the award of a NATO Fellowship to J. M.

E. J. Corey,* John Mann

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received July 25, 1973

Effects of Halogen Substituents on the Intrinsic Acidity of Acetic Acids Determined by Measurements of Gas-Phase Ion Equilibria

Sir:

Recently¹ we reported results for the gas-phase equilibria (1) measured with a pulsed electron beam high-

(1) R. Yamdagni and P. Kebarle, J. Amer. Chem. Soc., 95, 4050 (1973).

⁽⁹⁾ E. J. Corey and A. Venkateswarlu, J. Amer. Chem. Soc., 94, 6190 (1972).

⁽¹⁰⁾ H. Oediger, F. Möller, and K. Eiter, Synthesis, 591 (1972).

Table I^a

(a) Directly Measured Equilibria $A_1^- + A_2 H = A_1 H + A_2^-$					
A _i H	A_2H	$-\Delta G^{\circ}_{600}$	$\mathbf{A}_{1}\mathbf{H}$	A_2H	$-\Delta G^{\circ}_{600}$
H ₂ S	CH ₃ CO ₂ H	5.0	CH ₂ ClCO ₂ H	CH ₂ BrCO ₂ H	1.2
CH_2FCO_2H	HC1	1.2	CH_2ClCO_2H	CHF_2CO_2H	5.1
CH_2FCO_2H	CH ₂ ClCO ₂ H	2.0	CH_2ClCO_2H	CHCl ₂ CO ₂ H	7.0 ^b
CH_2FCO_2H	CH ₂ BrCO ₂ H	3.0	CHF ₂ CO ₂ H	CHCl ₂ CO ₂ H	1.8°
CH_2FCO_2H	CHF ₂ CO ₂ H	7.2	CHF_2CO_2H	CF ₃ CO ₂ H	7.2
	(b) Acidity of AH ^g			(c) Proton Transfer from AH to CH ₃ CO ₂ -	
AH	D(A-H) - EA(A))	$EA(\mathbf{A})$	$-\Delta G^{\circ}_{ m gas}$	$-\Delta G^\circ_{ m aqua}$
CH ₃ CO ₂ H	31.8 ^d		(78.2)*	0	0
CH_2FCO_2H	21.0		(89.0) ^e	10.8	3.1
CH ₂ ClCO ₂ H	19.0		(91.0) ^e	12.8	2.7
CH ₂ BrCO ₂ H	17.9		(92.1) ^e	13.9	2.7
CHF ₂ CO ₂ H	13.8		(96.2) ^e	18.0	5,0
CHCl ₂ CO ₂ H	12.0		(98.0) ^e	19.8	4.9
$CF_{3}CO_{2}H$	6.6		(103.4) ^e	25.2	6.4

^a All energy values in kcal/mol. ^b Measured at 490°K. ^c Measured at 536°K. ^d R. Yamdagni and P. Kebarle, J. Amer. Chem. Soc., 95, 4050 (1973). * Estimated on basis of D(A-H) = 110 kcal/mol, V. I. Vedeneyev, et al., "Bond Energies, Ionization Potentials and Electron Affinities," E. Arnold Publishers Ltd., London, 1966. / From aqueous acid dissociation constants, C. R. Noller, "Chemistry of Organic Compounds," W. B. Saunders Co., Philadelphia, Pa., 1966, p 988. These values were obtained at room temperature. / The gas-phase acidity is normally defined as equal to ΔG° or ΔH° for the reaction AH(g) = A⁻(g) + H⁺(g). The ΔH° equals $D(A-H) + I_p(H) - EA(A)$. The large and constant $I_{p}(H) = 313.6$ kcal/mol was omitted from the acidity values given in the table in order to facilitate comparison of the relative changes.

$$A_{1}^{-} + A_{2}H = A_{1}H + A_{2}^{-}$$
(1)

pressure ion source mass spectrometer. The compounds AH were mostly aliphatic carboxylic acids. The present work is an extension to fluoro-, chloro-, and bromosubstituted acetic acids.

The directly measured equilibria are shown in Table Ia. The experimental conditions were very similar to those used previously.¹

The equilibrium constants K_1 were calculated from the known neutral concentrations $[A_1H]$ and $[A_2H]$ admitted to the ion source and the measured ion ratio of the A_2^- and A_3^- signals observed after the equilibrium (1) was established. The ΔG° values in Table Ia were obtained from the relationship $-RT \ln K_1 =$ ΔG° . The temperature dependence of ΔG° for proton transfer reactions involving amines like NH_{4} + $CH_3NH_2 = NH_3 + CH_3NH_3^+$ was examined in an earlier publication² which established that ΔS° was generally not larger than 1-2 eu and thus $\Delta G^{\circ} \approx \Delta H^{\circ}$ in the range 30-300°. Small entropy changes are expected in such systems, where essentially only a change of symmetry number occurs. However, for the present compounds, changes of several entropy units are conceivable since barriers to rotation around single bonds³ might be created or eliminated in reaction 1. Therefore, attempts were made to measure the temperature dependence of K_1 . However, the accessible temperature range was restricted by thermal decomposition of the acids above 370° and formation of the AHA⁻ dimers below 300°. The temperature dependence of K_1 for proton transfer from difluoroacetic acid to the monofluoroacetate ion in the above range gave $\Delta S^\circ \sim 2.5$ eu which corresponds to a difference of 1.5 kcal between ΔH° and ΔG° at 330°. It was felt that no accurate entropies can be obtained over such a narrow range and further entropy determinations were postponed until a modification to the apparatus could be made which would allow measurements at lower temperatures and pressures where the rate of formation of AHAwill be slow but reaction 1 still fast enough for equilibration.

The acids are shown in Table Ib in order of decreasing D(H-A) - EA(A), *i.e.*, in order of increasing gas-phase acidity. These data were obtained by assuming that $\Delta G_1^{\circ} = \Delta H_1^{\circ}$ and using the equation $\Delta H_1^{\circ} =$ $D(A_2-H) - D(A_1-H) + EA(A_1) - EA(A_2)$. The known⁴ D(H-Cl) - EA(Cl) = 20 and D(HS-H) - Cl $EA(SH) = 37.0 \text{ kcal/mol}^{\circ} \text{ together with the acidities}$ determined in the earlier publication¹ were used as reference points.

Examining the numerical values one finds that the introduction of a halogen substituent leads to a large increase of acidity. The well-known acidity increase of haloacetic acids in aqueous solution has been ascribed to the stabilizing influence on the negative charge by the electron-withdrawing halo substituents. (-I inductive effect). The ΔG° values for proton transfer from acetic acid to haloacetic acids in the gas phase are compared in Table Ic with the corresponding aqueous values which were measured at room temperature. Since we assume that ΔG° in the gas phase has only small temperature dependence, the comparison of the two sets of data should be meaningful in spite of the temperature difference. The gas-phase ΔG° changes are seen to be 3.5-5 times larger. Attenuation of substituent effects in aqueous solution has been observed previously by Taft⁶ and others⁷ and must be due to a solvation decrease for the stabilized ions.

It is interesting to note that the order of the inductive effect of the halo substituents in the gas phase is Br > Cl > F which is reverse of the aqueous order. At present we cannot eliminate the possibility that the reversal is due to halo substituent dependence of rota-

⁽⁴⁾ Selected values of chemical thermodynamic properties, Nat. Bur. Stand. (U. S.) Tech. Note, 270-3.

⁽⁵⁾ J. A. Kerr, Chem. Rev., 66, 465 (1966); B. Steiner, J. Chem. Phys., 45, 5057 (1968).

⁽²⁾ J. P. Briggs, R. Yamdagni, and P. Kebarle, J. Amer. Chem. Soc., 94, 5128 (1972).

⁽³⁾ Information on various energy barriers to rotation can be obtained from J. P. Lowe, Progr. Phys. Org. Chem., 6, 1 (1968).

⁽⁶⁾ M. Taagepera, W. G. Henderson, R. T. Brownlee, J. L. Beauchamp, D. Holtz, and R. W. Taft, *J. Amer. Chem. Soc.*, 94, 1369 (1972).
(7) A. G. Harrison, P. Kebarle, and F. P. Lossing, *J. Amer. Chem. Soc.*, 83, 777 (1961).

tional barrier entropy changes. However, it is more likely that the reversal is caused by electronic effects. The most probable explanation would be the higher polarizability⁸ of the larger halo substituents. The atomic polarizabilities α of F, Cl, and Br are 0.53, 2.61, 3.79 Å³, respectively.⁹ The distance r in the acetate ions between one of the O atoms and the halogen substituent may be estimated to be 2.69, 2.85, and 2.89 Å, respectively. Assuming that one-half electronic charge is on the O atom, one calculates, using the electrostatic equation for potential energy $u = \alpha e^2/2r^4$, the negative energies 0.5, 1.6, and 2.2 kcal/mol, respectively. Somewhat larger energies can be obtained with bond polarizabilities.¹⁰ The energy differences in both cases would seem sufficient, to explain the gas-phase results, only if the inductive effect, in the absence of polarization, changes (increases) very little from Br to F. There is some independent evidence that this is so. Thus the aqueous acidity of meta-halo-substituted benzoic acids and phenols does not increase from Br to F as might have been expected but increases from F to $Cl \approx Br$ then decreases slightly for I. Gas-phase acidities of meta-substituted phenols determined recently by Mc-Iver¹¹ also increase in the order F, Cl, Br. Since the stabilizing effect of the substituents in the gas phase increases in the order F, Cl, Br, the higher aqueous acidity of the fluoroacetic acid must be due to solvent effects. Since the halo atom acquires a small negative charge, one water molecule might be hydrogen bonding to it. This bonding interaction will be weaker for the larger Br atom than the smaller F.

The values of Table Ic show that in general the second halogen atom leads to a smaller increase of acidity than the first. This effect is observed also in solution and is generally expected. An exception is the change between difluoro- and trifluoroacetic acid where the gasphase acidity difference is the same as that between mono- and difluoro-. We are not certain whether this is a true result or an experimental error.

(8) The effect of polarizability of alkyl groups on gas-phase acidities of alcohols was first suggested by J. I. Brauman and Larry K. Blair, J. Amer. Chem. Soc., 92, 5986 (1970). (9) S. Fraga, K. M. Saxena, and B. W. N. Lo, Atomic Data, 3, 323

(1971).

(10) J. D. Hirshfelder, C. F. Curtiss, and R. B. Bird, "Molecular Theory of Gases and Liquids," Wiley, New York, N. Y., 1964, p 947. (11) R. T. McIver, private communication.

> K. Hiraoka, R. Yamdagni, P. Kebarle* Department of Chemistry, University of Alberta Edmonton, Alberta, Canada Received June 12, 1973

Iron Tricarbonyl Complexes of 1(1H),2-Diazepine and Methyl Substituted Derivatives. Novel Fluxional **Organometallic Compounds**

Sir:

The unsubstituted molecule 1(1H),2-diazepine has so far escaped synthesis.¹ As a vinylogous analog of pyrazole, l(1H),2-diazepine is a nonaromatic polyene for which N-H tautomerism, represented by structures $1a \rightarrow 1b$, is expected.²

Streith first prepared 1-acylated $Fe(CO)_3-1(1H), 2-di$ azepine complexes.^{1b} Our interest in 1,2-diazepines and their complexes^{1a, 3-5} led us to investigate the trapping of 1 as an iron tricar bonyl analog of N-acetyl-1(1H). 2-diazepine as a first step in studies on the chemistry of the complexed heterocycle. We describe herein the synthesis of 1(1H),2-diazepine iron tricarbonyl (2) and the methyl substituted derivatives 3a,b, the conversion of 2 to the *N*-benzyl complex **3c**, and a novel type of fluxional behavior of the N-H complexes 2 and 3b which is a direct

consequence of the tautomeric behavior of the diazepines. Thermodynamic parameters (ΔG^{\pm} , ΔS^{\pm}) calculated from line-shape analysis of the nmr spectra are of interest in the wider contexts of molecular tautomerism⁶ and fluxionality.⁷

Treatment of 3e^{1a} with sodium ethoxide in ethanol (0°, 1 hr) gave, after chromatography on alumina, yellow crystals of 2^8 (60%): mp 121°; ir (C₆H₁₄) 3275 m (N-H), 2052 (s), 1990 (s), 1976 (s) cm⁻¹. The mass spectrum of 2 showed a parent ion at m/e 234 together with ions at m/e 206, 178, and 150 from successive loss of three CO groups and at m/e 94 due to the diazepine $[C_5H_6N_2]^+$ ion. A Mössbauer spectrum of 2 (δ

(2) L. Hunter, J. Chem. Soc., 806 (1945).

(3) G. Kan, M. T. Thomas, and V. Snieckus, Chem. Commun., 1022 (1971).

- (4) A. J. Carty, G. Kan, D. P. Madden, V. Snieckus, and M. Stanton, J. Organometal. Chem., 32, 241 (1971).
 (5) A. J. Carty, D. P. Madden, and T. Birchall, Inorg. Chem., 11,
- 1453 (1972).
- (6) A. R. Katritzky and J. M. Lagowski, Advan. Heterocycl. Chem., 1, 312, 341 (1963); 2, 3, 27 (1963).
- (7) F. A. Cotton, Accounts Chem. Res., 1, 257 (1968).

(8) Satisfactory elemental analyses have been obtained for all compounds described herein.

⁽¹⁾ For recent summaries of work on 1,2-diazepines see (a) A. Balasubramanan, J. M. McIntosh, and V. Snieckus, J. Org. Chem., 35, 433 (1970); (b) J. Streith and J. M. Cassal, Bull. Soc. Chim. Fr., 2175 (1969); (c) G. Taurand and J. Streith, Tetrahedron Lett., 3575 (1972); (d) F. D. Popp and A. C. Noble, Advan. Heterocycl. Chem., 8. 22 (1967).